9182

Resonance Raman CeC Stretching Frequencies
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We report resonance Raman (RR) spectra of methyl-, ethyl-,
and adenosylcobalamin (MeCbl, EtCbl, and AdoChbl, Figure 1),
in which the Ce-C stretching vibration is identified by isotopic
substitution. The frequency of this mode diminishes in the order
MeCbl > EtCbl > AdoCbl, consistent with changes in the
Co—C bond dissociation energy (BDE). Unexpectedly, how-
ever, the frequency is unaffected by displacement of the
benzimidazoldrans ligand. These spectra provide important
controls for the investigation of mechanism in vitamin,B
dependent enzymés.

Although the corrin chromophore provides strong enhance-
ment of RR scattering, early B studies were hampered by
Co—C bond photolysis induced by the Raman lesérhe later
discoveries that the CeCHjs stretch can be detected imB
model$ and is a prominent feature of the MeCbl FT-Raman
spectrum obtained with long-wavelength (1064 nm YAG laser)
nonphotolyzing radiatichled to investigations of the determi-
nants of the Ce-CHz bond strengtl. However, other Ce
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Figure 1. Structural diagram of alkylChl species and a schematic
representation of the base-on/base-off equilibrium. In the base-off form,
H,0 binds to the Co at low temperature but not at room temperé&ture.

The trend in the CeC frequencies (MeCbk EtChbl >
AdoCbl) implies weakening of the Calkyl bond with increas-
ing bulk of the alkyl group, consistent with prevalent ideas about
steric effect$ The AdoCbf and MeCbl° crystal structures
show the corrin ring to be folded, butterfly fashion, with the
wings tilted toward the alkyl group, enforcing nonbonded
contacts. The Coalkyl bond dissociation energy is reported
to be appreciably lower for AdoChl (3@ 2 kcal/mol}! than

alkyl stretches have escaped detection with FT-Raman specfor MeCbl (37 £ 3 kcal/mol)? If this lowering is attributed
troscopy? Moreover, the lack of resonance enhancement meansto Co—C bond weakening, due to increased nonbonded forces
that high sample concentrations are required for spectral on the bulky adenosyl group, then a proportionate lowering of

acquisition, precluding studies onBcontaining proteins.
Recently, we were able to detect the-G0H; stretching RR
band in a Bxrdependent methyl transferase enzyme, using a
cryogenic techniqué. We now extend this technigue to alkyl
cobalamins (Figure 1). Although the RR spectra contain

the Co-C force constant is expected. Consistent with this
expectation, the ratio of the BDE values (AdoCbl:Me&h0.81

+ 0.1) is the same as the estimated force constant#40@B3,
taking the mean of the two observed frequencies 443 and 429
cm1 as representative of AdoCbl). Thus, the RR spectra

numerous bands arising from the corrin chromophore, isotopic indicate that the BDE lowering is mainly due to €6 bond

substitution permits ready detection of the-€0o stretches at
506, 471, and 443/429 crh for Me-, Et-, and AdoChl,
respectively (Figure 2). The first of these values agrees with
the FT-Raman dath,but the other frequencies have not

previously been determined. The pair of isotope-sensitive bands

weakening in AdoCbl, and, by extension, in EtCbl as well.
However, the RR spectra also reveal that effects ofridmes

ligand on the Ce-alkyl BDE arenot connected to the CeC

bond strength (Figure 3). When the benzimidazole ligand is

seen for AdoCbl most likely results from two equilibrating
conformers, having different adenosyl orientations, which have
been detected by NMR spectroscadpy.
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Figure 2. Cryogenic, resonance Raman spectra of base-an, CiH- Figure 3. RR spectra of base-off GH CH,CHs-, and AdoCbl in 0.1

CHs-, and AdoCbl in 50mM pH 7.5 potassium phosphate buffer. Iso- N HCI, with inset difference spectra: (a) GEbl/CDsCbl; b. CHs-
tope labeling identifies the CeC stretching band, as shown in the in-  CH,Cbl/CH;CD.Cbl; c. AdoCbl/3CD,-AdoCbl. Experimental condi-
set difference spectra: (a) @Ebl/CD;Cbl; (b) CHCH,Cbl/CH;CD,Cbl; tions were as in Figure 2. The weakness of the 469%dmand in the
(c) AdoChl/3CD,-AdoCbl. CHCbl and AdoCbl were purchased from  EtChl spectrum reflects partial photolysis in this sampi&Q@%, as
Sigma, while EtCbl was synthesized as described for neopentylcobal-judged by HPLC), which was the least stable sample in the series.
amin2* CH3;CH,Br, CDsl, and **CHjsl were purchased from Aldrich,
and CHCD,Br was from Cambridge Isotopes Lab. AdoCbl with deu-  of methylmalonyl-CoA mutaséand of methionine synthadg,
terium at the Sposition was synthesized enzymatically using ribonu-  \yhich show the benzimidazole of Cbl to be displaced by a
cleotide reductas€. The cobalamins were purified by HPLC ona C18  histidine side chain. The present evidence indicates that these
reverse phase column (Phenomenex) eluted (2 mL/min) isocratically displacements need not have any influence on theCbond
with 5 mM HCI, pH 5.3 (adjusted with NaOH), 40% methanol. The ~qpenqih although they could nevertheless affect the enzymatic
cobalamin fractions (detected by absorption at 254 nm) were pooled, rate. For example, a charge relay mechanism has been sugges-
lyophilized, and stored at80 °C, and then dissolved in cold degassed . Lo . -
- ' _ted for methionine synthase in which proton transfer between

22rir:]n'\e/ln?30tass§#1rg}e2u(f$’ ?ﬂ;ﬁ?,‘vﬂ)uvsvteEee{g;edéﬁsiznaaﬁgsidR;&?n ®* the histidine ligand and an adjacent aspartate side chain could

: : _alternatively stabilize the Co(lll) ground state or the Co(l)

ward under N gas in the dark, and then frozen and degassed by pump- ¢ .
ing. Raman scattering from a Kion laser (530.9 nm) was collected  INtermediate produced by methyl transférOn the other hand,

in a 135 backscattering geometry, dispersed in a triple monochromator the one Ce-CH; frequency so far detected in aBenzyme,
(3 e ! spectral width), and detected with an intensified photodiode the corrinoid-FesS protein in the acetyl-CoA synthesis pattfway,

array. Raman shifts were calibrated with G&hdN,N-dimethylform- is much lower (429 cm!) than in enzyme-free MeCbl and
amide standard spectra. Sample integrity was checked via UV-visible implies substantial enzyme-induced-€0H; bond weakening
absorption and HPLC analysis after the Raman measurement. (by ~7 kcal/mol if BDE scaling of the force constant applies).

Some mechanism other than (or in addition to) benzimidazole
replaced by water, upon protonation in acid solution [*base- displacement is implied, possibly an influence on the corrin ring
off” cobalamin, see Figure 1] the CAdo BDE is increased  conformation that weakens the €6Hs; bond sterically.
substantially to 34.5- 1.8 kcal/mol** But there isno change
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